ポイント
-
プライバシー保護連合学習技術「DeepProtect」を株式会社イエラエセキュリティに技術移転
-
データの機密性やプライバシーを保護しつつ、安全に複数組織間で連合学習による解析を実現
-
複数組織の機密性の高いデータ解析が必要なビジネス分野への活用に期待
国立研究開発法人情報通信研究機構(NICT、理事長: 徳田 英幸)は、サイバーセキュリティ研究所セキュリティ基盤研究室において開発した、パーソナルデータなど機密性の高いデータを複数組織間で互いに開示することなく安全に解析することができるプライバシー保護連合学習技術「DeepProtect」を、株式会社イエラエセキュリティ※(代表取締役社長: 牧田 誠)に技術移転しました。
複数組織が協力してデータを利活用するためには、機密性の確保やプライバシーの保護といった課題があり、プライバシー保護データ解析技術に対する期待が高まっています。しかし、プライバシー保護データ解析技術を利用するには、AIやセキュリティに関する高度な技術や知見が必要とされます。
今回、「DeepProtect」をサイバーセキュリティ・暗号・機械学習に関する高い技術力を持つイエラエセキュリティに技術移転したことによって、同社の環境構築や技術支援の下で、データの機密性やプライバシーの確保に課題を抱えてきた様々なビジネス分野(医療、マーケティング等)において、複数組織で協力したデータ解析が可能になりました。
今後、NICTは、引き続き、秘密計算技術や連合学習技術等のプライバシー保護データ解析の基盤技術の研究開発を進め、イエラエセキュリティは、プライバシー保護連合学習技術のビジネス化を推進していきます。
※「株式会社イエラエセキュリティ」は、2022年4月1日に「GMOサイバーセキュリティ byイエラエ株式会社」へ社名を変更いたします。
背景
様々な産業分野においてAIの活用が普及しDX(デジタルトランスフォーメーション)が進展する中で、AIの性能を向上させるためには、多くの学習用データを集める必要があります。しかし、単一組織で十分な量のデータを確保することは難しく、また、複数組織間でデータを共有することについては、プライバシーの保護や情報漏えいに対する懸念があります。
このような中で、NICTはフェデレーテッドラーニング(連合学習)という技術に独自の暗号技術を融合し、パーソナルデータなど機密性の高いデータを互いに開示することなく安全に深層学習を用いて解析することができるプライバシー保護連合学習技術「DeepProtect」を開発しました。「DeepProtect」は、複数組織間で連合して深層学習を行う際に、組織外部に送信する情報(深層学習のパラメータ)を統計情報化し、かつ、暗号化することによって個人識別ができない状況で統合し、各組織の学習モデルを更新することが可能です。現在、NICTは、「DeepProtect」を活用して金融分野における不正送金の自動検知システムの実現に向けた実証実験を進めており(2022年3月10日の報道発表を参照)、一方で、他の分野にも広く応用するため、本技術の社会実装を行うためのパートナーを探していました。
今回の技術移転について
今後の展望
プライバシーの保護や情報漏えいに対する懸念に対処しつつ、複数組織間で連合して安全にデータを利活用することを可能とするために、NICTは、プライバシー保護データ解析技術の社会実装を目指し、引き続き、秘密計算技術や連合学習技術等の基盤技術の研究開発を進め、技術移転を推進していきます。また、イエラエセキュリティは、スマート社会実現に向け、複数組織間でのデータ利活用のユースケースに応じた最適なソリューションを様々な企業に提供し、プライバシー保護連合学習技術のビジネス化を推進していきます。